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Hyperspectral imaging captures scene information across narrow, contiguous bands of the electromagnetic spectrum. Despite 
its proven utility in industrial and biomedical applications, its ubiquity has been limited by bulky form factors, slow capture 
times, and prohibitive costs. In this work, we propose a generalized approach to snapshot hyperspectral imaging that only 
requires a standard rolling shutter camera and wavelength-adjustable lighting. The crux of this approach entails using the 
rolling shutter as a spatiotemporal mask, varying incoming light quicker than the camera’s frame rate in order for the captured 
image to contain rows of pixels illuminated at different wavelengths. An image reconstruction pipeline then converts this 
coded image into a complete hyperspectral image using sparse optimization. We demonstrate the feasibility of this approach 
by deploying a low-cost system called ChromaFlash, which uses a smartphone’s camera for image acquisition and a series of 
LEDs to change the scene’s illumination. We evaluated ChromaFlash through simulations on two public hyperspectral datasets 
and assessed its spatial and spectral accuracy across various system parameters. We also tested the real-world performance 
of our prototype by capturing diverse scenes under varied ambient lighting conditions. In both experiments, ChromaFlash 
outperformed state-of-the-art techniques that use deep learning to convert RGB images into hyperspectral ones, achieving 
snapshot performance not demonstrated by prior attempts at accessible hyperspectral imaging.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile devices; • Computing methodologies → 
Hyperspectral imaging; Computational photography.
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1 INTRODUCTION
Cameras have transitioned from mere devices for capturing memories and performing surveillance to supporting 
advanced computer vision tasks. The ubiquity of cameras has facilitated exciting applications, including augmented
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reality [9], remote vital sign monitoring [65], body motion tracking [1], and assistive technologies [46]. These
diverse applications predominantly rely on the capabilities of standard RGB cameras, which mimic the human
color vision system by faithfully reproducing scenes with a dense array of red, green, and blue color filters. Because
of how they are designed, RGB cameras do not conventionally capture the intricate spectral characteristics of
objects and surfaces, which can provide insights into their material composition and contribute to a better
understanding of the scene. This is particularly important for application domains requiring high precision, such
as robotics and machine vision [68], agriculture [36], digital forensics [38], and healthcare [23].
This shortcoming has given rise to hyperspectral imaging systems that are able to capture the reflectance

properties of each point in a scene across numerous finely divided spectral bands, revealing distinctions between
objects and surfaces that may appear identical to the naked eye or RGB cameras. Traditional hyperspectral
imaging systems rely on a 2D sensor, thereby requiring a spatial or temporal scanning process for acquiring the
3D hyperspectral information. Achieving this functionality requires sophisticated equipment that can cost above
$25,000 USD, prohibiting the widespread adoption of these devices [50]. Furthermore, scanning makes traditional
hyperspectral imaging systems impractical for scenarios involving moving cameras (e.g., head-mounted displays,
robots) and dynamic target objects (e.g. moving eyes of a patient [23], produce on conveyor belts [61]).
Prior work in ubiquitous computing has attempted to alleviate problems associated with the form factor and

accessibility of hyperspectral imaging by proposing mobile, wearable, and low-cost implementations [21, 50, 60].
However, each of them fails to address critical technical challenges including spatial resolution [60], acquisition
time [21], and robustness to variation in camera parameters [50]. Literature in computer vision has made notable
progress in developing snapshot hyperspectral imaging techniques leveraging compressed sensing and coded
imaging [66], yet most of these methods either necessitate highly specialized components or bulky hardware.

We propose a generalized approach to accessible snapshot hyperspectral imaging. Most RGB cameras employ
a rolling shutter to expose the sensor’s pixels to incoming light row by row within a given frame. Since the
exposure of each row is on the order of microseconds, this mechanism enables opportunities for high-speed
imaging and optical sensing [4, 51]. Meanwhile, the wavelength of incoming light from the scene can be varied
using either passive filters or active illumination. We harness these affordances to capture a 2D-coded image
with spectral information interleaved between pixel rows. This coded image can then be reconstructed into a 3D
hyperspectral image using sparse optimization techniques. However, using a multispectral flash in conjunction
with a rolling shutter camera introduces a few technical challenges. Since the rolling shutter operates row by
row, the spectral information is spread across that dimension according to factors such as the sensor’s frame rate,
the shutter speed, the frequency at which the incident light is changed, and the order of the light’s wavelengths.
These factors lead to an intricate trade-off between spread and noise.

To demonstrate the feasibility of our proposed approach, we implemented a smartphone-based system called
ChromaFlash that uses a standard smartphone camera with a low-cost multispectral flash consisting of multiple
narrowband LEDs. ChromaFlash’s multispectral flash is similar to the True Tone flash1 found on recent iPhone
models, which cycles through multiple wavelengths at a high rate to enhance image quality according to the
surrounding light. Leading up to our ChromaFlash system, our work makes the following contributions:

• Rolling shutter-coded hyperspectral imaging: We introduce a novel imaging approach that uses a
rolling shutter camera and rapidly changing incident light to efficiently capture 3D hyperspectral infor-
mation into 2D images with row-wise interleaving of spectral information. We explain the underlying
theory of the image formation process and outline the steps required to reconstruct complete hyperspectral
images from these coded images.

• Discovering optimal parameters of operation: Several parameters impact the accuracy of our approach
to hyperspectral reconstruction. For ChromaFlash specifically, these include the frequency at which the

1https://www.apple.com/newsroom/2017/09/iphone-8-and-iphone-8-plus-a-new-generation-of-iphone/
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illumination is varied, the number of LEDs illuminated together, the number of coded image frames used,
and sensor noise. We conducted a series of simulated experiments using publicly available hyperspectral
datasets [34, 63] to examine how these parameters affect reconstruction performance across various
scenes. These simulations helped us quantify theoretical performance limits, trade-offs, and trends before
implementing ChromaFlash.

• Real-world implementation and evaluation:We demonstrate the feasibility of our approach by im-
plementing ChromaFlash using a smartphone camera paired with a compact multispectral LED array
attachment. We assessed its real-world performance by capturing diverse scenes under varying ambient
lighting conditions, comparing it against the state-of-the-art RGB-to-hyperspectral model MST++ [13].
These tests contextualize our work within existing research and showcase its robustness and versatility in
practical scenarios.

• Open-source hardware and software: To facilitate replication and further development, we provide a
list of materials, hardware schematics, and source code for our multispectral flash implementation, Android
camera application, and image processing pipeline (https://github.com/chai-toronto/chromaflash/).

2 RELATED WORK
In our overview of related work, we first cover conventional methods of hyperspectral imaging. We then describe
how techniques in computational imaging have been used to optimize hyperspectral image acquisition. We
conclude by discussing various approaches that have been taken to make hyperspectral imaging more accessible.

2.1 Conventional Hyperspectral Imaging Techniques
The goal of hyperspectral imaging is to generate a 3D image wherein the first two dimensions are spatial (width
and height) and the third dimension is spectral (wavelengths). Conventional hyperspectral imaging techniques
typically involve scanning the scene across either the spectral or spatial dimensions in order to generate this
spectral image. These methods can be further categorized as either active or passive, where passive imaging
relies on natural scene lighting and active imaging utilizes controlled light sources to illuminate the scene with
the desired spectra.
Spatial scanning techniques are typically passive. Whiskbroom scanning uses a 1D camera sensor to scan

through a scene pixel-by-pixel, whereas pushbroom scanning uses a 2D camera sensor to scan through a scene
line-by-line [19]. Before the light reaches the camera sensor, it is passed through a series of refractive lenses
and then either a prism or a diffraction grating to disperse the light into multiple wavelengths. Another passive
approach that implicitly provides spatial scanning involves placing a custom color filter array directly in front of
the camera sensor [59]. These filter arrays consist of narrowband filters arranged in a known pattern, similar
to the Bayer filter pattern used for RGB cameras. Recovering the final spectral image requires a demosaicing
algorithm to interpolate missing spectral information in neighboring pixels.

Wavelength scanning techniques [32] can be either passive or active. The passive approach involves capturing
a scene through optical bandpass filters that change over time, either mechanically with motors that switch
distinct filters [18] or electronically with a tunable filter like the Fabry-Perot interferometer [54]. The active
approach involves sequentially changing the illuminant spectrum over time using narrowband lasers or LEDs.
The aforementioned methods must adhere to the Nyquist-Shannon sampling theorem, sampling pixels and

wavelengths at a sufficient rate to characterize the spectral image before advancing to a new frame. To achieve
that minimum rate, these methods must sacrifice temporal resolution at the expense of reasonable spatial and
spectral resolution, making them most suitable for static or slow-moving scenes. Our proposed approach relies
on principles of compressed sensing to capture the spectral image in a single camera sensor frame. By utilizing
computational algorithms, we reconstruct the signal from a significantly reduced number of samples in both the
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spatial and spectral domains. This approach enables us to overcome the limitations of traditional methods and
achieve efficient spectral imaging.

2.2 Computational Hyperspectral Imaging
Computational hyperspectral involves applying techniques like compressed sensing and image processing to
extract hyperspectral information from a subset of measurements. Turning to computational methods circumvents
the temporal limitations of scanning methods, leading to hyperspectral imaging systems with faster acquisition
times. As such, prior work has leveraged computational hyperspectral imaging systems to capture spectral videos
[33]. Below, we discuss some of these methods based on the underlying optical phenomenon they leverage.

2.2.1 Refraction-based Systems. Refraction-based cameras utilize the principles of refraction and dispersion
to extract spectral information. Computed tomographic imaging spectrometry (CTIS) is one of the earliest
computational approaches in this space [30]. CTIS utilizes a diffraction grating to split incident light rays into
multiple spectral projections on an image plane. It is similar to spatial scanning approaches in that it splits a
spectral image into spatial bands; however, CTIS captures all of these bands at once rather than scanning them
over time and uses algorithms to reconstruct the target spectral image. Still, this method has its own spatial
resolution limits, as the reconstructed image typically has less than 10% of the original sensor resolution. A
significant breakthrough in this field came with the introduction of coded aperture snapshot spectral imagers
(CASSI) [6, 56]. CASSI involves directing the scene through collimating optics onto a binary-coded aperture
placed in front of a dispersive element. This arrangement spreads the spectral information over a small spatial
neighborhood on the sensor, improving the distribution of wavelengths across the entire image. Capturing a set
of coded images also makes the sensing problem less challenging and enables robust reconstruction of spectral
information. Unfortunately, such systems require precisely customized and calibrated aperture masks, the cost of
which has hindered the use of refraction-based systems outside of laboratory settings.

2.2.2 Diffraction-based Systems. Diffraction-based cameras make use of diffractive optical elements (DOEs)
to bend and spread light waves through an opening. The DOE serves as a lens that results in spatially shifted
projections variant to the spectral wavefront. Therefore, they can be modeled as the spectral integration of a
convolution between the target spectral image and a point spread function for each wavelength, allowing for
the spectral image to be recovered via deconvolution. Baek et al. [7] demonstrated such an arrangement by
attaching a prism to a standard DSLR camera. The resulting system had a high spatial resolution, equal to that of
the camera sensor; however, the spectral information was only encoded at the edges of the scene, resulting in a
highly ill-conditioned inverse problem and lower spectral accuracy. Others have used a diffuser as the DOE in
their system [39]. Prisms and diffusers are much more compact than the optical coding elements that are used in
refractive-based systems, making diffraction-based systems inherently smaller. To further improve compactness,
Jeon et al. [28] developed a custom DOE that uniquely encoded spectral information in a spectrally rotating point
spread function. Fabricating the diffractive element required sophisticated processes such as photolithography
and reactive-ion etching on a silicon wafer, making it difficult to mass produce. Moreover, even the most advanced
DOE designs still pose severely ill-conditioned sensing problems due to the lack of spatial codification.

2.2.3 Upsampling from RGB. To circumvent the need for any additional hardware, several works have attempted
to approximate spectral information directly from a single RGB image. Some of these approaches have mapped
RGB values to spectra directly by basis functions derived from a large database [20] or smooth parametric
models [2]. Unlike other methods discussed, these approaches do not attempt to capture the spectral properties
of a specific scene; rather, they propose a general mapping from RGB to further spectra. Others have tried to
reconstruct spectral images from RGB by optimizing ill-posed inverse problems. These methods can be split into
two categories — prior-based and data-driven methods — that take advantage of the redundancy in image data.
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Prior-based methods leverage statistical information in spectral images like sparsity, spatial structure similarity,
and spectral correlation to seek plausible solutions in a more constrained space. Data-driven methods exploit
deep learning models trained on large-scale datasets with paired RGB and hyperspectral images to find solutions.
Various model architectures have been used to this end, such as convolutional neural networks (CNNs) [31, 62]
and generative adversarial networks (GANs) [3, 35]. Although deep learning approaches surpass prior-based
methods in terms of reconstruction accuracy, their generalizability to scenes that deviate from their training
datasets remains questionable. Most of these models also do not generalize well when transferred to cameras
with unknown color responses. More importantly, the spectral accuracy of these methods is limited by the
metameristic input of the RGB camera, meaning the same RGB pixel could map to different spectral curves.

While computational hyperspectral imaging addresses many limitations associated with conventional methods,
challenges regarding hardware complexity, generalizability, and spectral accuracy remain. ChromaFlash takes
inspiration from the aforementioned work and utilizes simpler hardware to make computational hyperspectral
imaging more accessible.

2.3 Towards Accessible Hyperspectral Imaging
Recent advancements in hyperspectral imaging have brought forth low-cost and miniaturized solutions, making it
more accessible than ever before. Within the ubiquitous computing community, there has been a particular interest
in spectroscopy, driving efforts to create cost-effective solutions for various applications. These applications
encompass food and beverage analysis [26, 29, 37], medication management [16], and blood glucose monitoring
[60]. However, spectroscopy captures spectral information at a single point, lacking the detailed spatial data
provided by hyperspectral imaging more broadly. Goel et al. were among the first to develop a low-cost active
hyperspectral camera through their work on HyperCam [21], which utilized an off-the-shelf camera sensor and
narrow-band LEDs. Their systemwas operationally similar to a wavelength scanner, sequentially capturing frames
in 17 visible and NIR spectral bands at 9 fps. Cao et al. [15] demonstrated the ability to capture hyperspectral
videos using a simple setup consisting of a prism and a checkerboard mask. In the realm of do-it-yourself
approaches, Zhao et al. [67] were able to achieve hyperspectral imaging using a random aperture mask created
using a consumer-level color printer and a CNN model to reconstruct the spectral image. Salesin et al. [47]
introduced a similar system based on polarization-induced spectral filters.
In addition to dedicated hyperspectral imaging devices, recent research has sought to push the limits of the

existing cameras in everyday consumer devices. Researchers have explored integrating simple optical components
like prisms [7], diffractive gratings [27], and diffusers [28] with standard DSLR cameras to collect data that is later
reconstructed into spectral images. Oh et al. [41] harnessed the inherent variation in spectral sensitivities across
different digital cameras to estimate the spectral reflectance of scenes. Furthermore, the SpeCam project [64]
utilized a smartphone’s display and front-facing camera as an active illumination source and optical sensor,
respectively, to enable surface color and material sensing applications. Stuart et al. [52] developed a 3D-printed
attachment that transforms a smartphone into a line-scan hyperspectral imager.
These developments have led to several open-source and commercially available options for consumer hy-

perspectral imaging. However, devices like the Specim IQ2 and Monarch II3 are based on scanning methods
that limit their practical usage for mobile devices. Similarly, devices like Lumos [60] and Spectricity4 rely on
sophisticated custom hardware that may restrict their efficacy to certain classes or generations of devices. In
contrast, our generalized approach could be theoretically implemented with any rolling shutter camera by varying
the wavelength of incoming light from the scene using either passive filters or active illumination light. With a

2https://www.specim.com/iq/
3https://www.unispectral.com/product/monarch-ii-camera/
4https://spectricity.com/product/
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simple hardware attachment and a software update, our approach can be easily deployed on the cameras found
on smartphones and IoT devices to provide novel optical sensing capabilities.

3 THEORY OF OPERATION
Our generalized approach and the working principle of ChromaFlash rely on the fact that rolling shutter cameras
do not capture an entire scene at once; rather, they scan the scene over a brief period. Changing how light
is sampled in the scene during this sequential capture results in a unique coding scheme that enables the
simultaneous capture of spatial and spectral data on the 2D camera sensor. This section describes this process
in more detail, providing details about rolling shutter exposure, the theoretical image formation model of our
technique, and the subsequent reconstruction process.

3.1 Rolling Shutter Exposure
In a rolling shutter camera, the exposure of each pixel row happens 𝑇𝑅𝑆 seconds after the exposure of the
preceding row5. If the topmost row is exposed at time 𝑇0, then the subsequent row 𝑟 starts becoming exposed at
time 𝑇𝑟 = 𝑇0 + 𝑟𝑇𝑅𝑆 . As a consequence, each row corresponds to a distinct temporal sample of the scene. Row
𝑟 captures the incoming light from the scene starting at time 𝑇𝑟 and continues for the exposure duration 𝑇𝐸𝑋𝑃

seconds, also known as the shutter speed of the camera. 𝑇𝑅𝑆 is typically smaller than 𝑇𝐸𝑋𝑃 , implying that a band
of 𝑁𝐸𝑋𝑃 = 𝑇𝐸𝑋𝑃/𝑇𝑅𝑆 rows is exposed to the incoming light at any given instant. This configuration enables the
rolling shutter to function as a spatiotemporal binary mask that regulates the incoming light.

3.2 Image Formation Model
Spectral reflectance refers to the ratio between the radiant flux reflected by a surface and the radiant flux incident
upon it. In simpler terms, it represents how much light at different wavelengths is reflected by an object or surface.
Spectral reflectance is often measured across a range of wavelengths to characterize the reflective properties of
materials. In an RGB image, spectral reflectance from every point within the scene is combined with the spectral
response of the incident illumination and integrated across three broad spectral channels of the color filter array:
red, green, and blue. In contrast, a hyperspectral image seeks to represent the spectral reflectance from every
point within the scene according to many more spectral channels without such integration.
A hyperspectral image can be represented as a 3D cube denoted by 𝐻 (𝑥,𝑦, 𝜆) ∈ R𝑋×𝑌×Λ. Here, 𝑋 , 𝑌 , and

Λ represent the horizontal, vertical, and spectral axes respectively. Each point within the cube corresponds
to the intensity value of wavelength 𝜆 at a spatial location (𝑥,𝑦) on the camera sensor. Hyperspectral images
typically have Λ > 10, ensuring significantly greater spectral fidelity compared to RGB images. According to the
Lambertian assumption [43], the relationship between a hyperspectral image and an RGB image can expressed as:

𝐼𝑐 (𝑥,𝑦) =
∫

𝐹𝑐 (𝜆) 𝐿(𝜆) 𝐻 (𝑥,𝑦, 𝜆) 𝑑𝜆 (1)

For each channel c ∈ (red, green, blue), 𝐼𝑐 represents the intensity of each channel in the linear RGB image. 𝐹𝑐 (𝜆)
denotes the spectral sensitivity function of the color filter array, indicating how sensitive each color filter channel
is to that particular wavelength. Finally, 𝐿(𝜆) is the spectrum of the illumination incident on the scene.

Since a rolling shutter camera serves as a spatiotemporal binary mask, modulating the illumination spectrum
received by the camera sensor over time can reveal spectral information along spatial dimensions. This procedure
is illustrated by the timing diagram on the left side of Figure 1. Spectral modulation can either be done actively
by rapidly changing the scene’s illumination with spectrally distinct light sources, or it can be done passively
by rapidly changing spectrally distinct filters in front of the camera sensor. The outcome of this process is a
5Some rolling shutter sensors might delay columns instead of rows. For simplicity and without loss of generality, we assume a sensor with an
inter-row delay.
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Fig. 1. The timing diagram on the left shows how modulating the illumination spectrum received by the camera sensor
within a single frame produces a spatial-spectral coded mask on the right. The columns of the timing diagram represent
different wavelengths received by the camera, while the horizontal black bars represent exposure during the camera’s rolling
shutter operation.

coded image where spectral information is spatially interleaved across successive bands of rows as shown on the
right side of Figure 1. In an active imaging approach utilizing an RGB camera, as we use for ChromaFlash, each
channel of the coded image 𝐽𝑐 (𝑥,𝑦) can be described as the following integral equation:

𝐽𝑐 (𝑥,𝑦) =
∬

𝐹𝑐 (𝜆) 𝑆 (𝑥,𝑦, 𝑡) 𝐿(𝜆, 𝑡) 𝐻 (𝑥,𝑦, 𝜆) 𝑑𝑡 𝑑𝜆 (2)

𝐻 (𝑥,𝑦, 𝜆) represents the hyperspectral image, 𝑆 (𝑥,𝑦, 𝑡) ∈ {0, 1}𝑋×𝑌×𝑇 denotes the binarymask function describing
the rolling shutter exposure, 𝐹𝑐 (𝜆) denotes the spectral sensitivity function of the RGB camera sensor, and 𝐿(𝜆, 𝑡)
signifies the time-varying spectral response of the active illumination. The equation remains similar for a passive
imaging approach besides two differences. First, there is an additional multiplicative term 𝐹+ (𝜆, 𝑡) within the
integral representing the time-varying spectral response of additional filters placed in front of the sensor, and
second, the spectral response for the ambient light 𝐿(𝜆) remains fixed with respect to time.
This model can be represented more compactly in a discrete vector-and-matrix form. Let h ∈ R𝑋𝑌Λ×1 be the

target hyperspectral image vector and j ∈ R𝑋𝑌3×1 be the captured RGB coded image vector. The spatial-spectral
mask M ∈ R𝑋𝑌Λ×𝑋𝑌Λ is calculated by integrating 𝐿(𝜆, 𝑡) and 𝑆 (𝑥,𝑦, 𝑡) over time for an active imaging approach
or 𝐿(𝜆), 𝐹+ (𝜆, 𝑡), and 𝑆 (𝑥,𝑦, 𝑡) over time for a passive imaging approach. We can represent the RGB camera
sensor’s spectral sensitivity function 𝐹𝑐 (𝜆) as F ∈ R𝑋𝑌3×𝑋𝑌Λ. The coding matrix Θ ∈ R𝑋𝑌3×𝑋𝑌Λ is the product of
F and M. Therefore, the continuous image formation model described above can be represented in a discrete
matrix form as:

j = FMh = Θh (3)
Our objective is to reconstruct the original hyperspectral image h from the captured coded image j.

3.3 Ambient Light Correction
In a passive configuration wherein filters are swapped in front of the camera sensor, the working principle
described thus far assumes that ambient illumination 𝐿(𝜆) is fixed in time and its spectral characteristics are
known. Ideally, the illumination should be from a broadband source like sunlight or white light to cover the
spectrum and achieve non-zero terms for 𝐿(𝜆) in Equation 1. Assuming the spectral characteristics of the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 132. Publication date: September 2024.



132:8 • Verma et al.

illuminant are not already known, they can be calculated by having a diffuse reference object (e.g., Spectralon6 or
white print paper) with known spectral reflectance properties in the scene.

In an active configuration that switches between spectrally distinct light sources, the working principle assumes
that the total illumination reaching the camera sensor solely originates from the known active illumination source
𝐿(𝜆, 𝑡) and is reflected back by the scene. However, the presence of additional ambient illumination complicates
this assumption with an additive component. Therefore, the desired coded image j can be formulated as:

j = jmeasured − jambient (4)

jmeasured denotes the image captured in the presence of both active illumination and ambient light, while jambient
represents the image captured solely under ambient illumination. The latter quantity can either be captured
as a distinct image or reconstructed from the coded image itself by having some image rows without active
illumination. This equation assumes that the light reaching the camera sensor remains within its dynamic range
(i.e., no saturation).

3.4 Hyperspectral Reconstruction
Reconstructing the complete hyperspectral image from the coded image is particularly challenging because
the system of equations is severely under-determined, meaning there are far fewer measurements (rows in Θ)
than unknowns (columns in Θ). Traditional least-squares inversion in such cases yields an infinite number of
possible solutions that satisfy the observed measurements in j as well as the coding operation Θ, most of which
are incorrect. To overcome this issue and narrow down the search space for solutions, we employ regularized
least-squares inversion.

By leveraging sparsity constraints and employing sparse reconstruction techniques using ℓ1-minimization, we
can efficiently find the most sparse solution of h that still satisfies the observed measurements in j and coding
operation Θ. This optimization problem is formulated and solved as:

hopt = argmin
s.t. h≥0

| |j − Θh| |22︸      ︷︷      ︸
data term

+𝛼 | |∇𝑥𝑦𝜆h| |1 + 𝛽 | |∆𝜆h| |2︸                        ︷︷                        ︸
prior terms

(5)

In this equation, the data term ensures that the reconstruction matches the coded measurements as closely as
possible. The prior terms impose additional regularization constraints to facilitate reconstruction. The 3D-TV
operator ∇𝑥𝑦𝜆 encourages solutions that are spatially and spectrally smooth by promoting sparsity of gradients in
all three dimensions, while the Laplace operator ∆𝜆 is exclusively applied to the spectral dimension to encourage
a smooth transition across the spectrum. The coefficients 𝛼 and 𝛽 are tunable parameters that help balance the
data and prior terms.
The effectiveness of this reconstruction process depends on multiple factors, including the distribution of

spectral information across the scene and the noise present during the image formation process. The problem
is undersampled to the point of potentially violating the Nyquist-Shannon sampling theorem, but principles
from compressed sensing theory like mutual incoherence and the restricted isometry property can be applied to
facilitate successful reconstruction [14, 17]. In short, it is crucial that the data and prior terms are incoherent
(i.e., not spatially or spectrally correlated) to efficiently capture the sparsity structure of the signal. This can be
achieved by introducing randomness into the coding matrix Θ, such as by randomizing the temporal order of
light sources utilized in an active imaging system.

6https://en.wikipedia.org/wiki/Spectralon
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Primary Camera Multispectral Flash
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MOSFET
Transistors

Fig. 2. ChromaFlash comprises a multispectral flash mounted on the back of a OnePlus 9 Pro smartphone. The smartphone’s
camera spectral response is depicted on the left, while the spectral power distribution of the LEDs is shown on the right.
Communication between the multispectral flash and the smartphone is enabled by an ESP32 microcontroller. MOSFET
transistor arrays facilitate high-speed LED switching via control signals from the ESP32 board.

3.5 Post-Processing
The reconstruction process involves interpolating information across pixel rows with image priors informed by
natural scenes. While the random sampling of spectral bands facilitates this process, interpolation accuracy can
be diminished in regions of the image where measurements for specific spectral bands are sparse, resulting in
noticeable band-like artifacts (see column 3 in Figure 8). While the reconstructed output typically maintains high
accuracy on smooth surfaces, this effect is particularly pronounced in areas with high spatial-spectral details,
such as those with numerous edges, texture, or rapidly changing colors. These visual artifacts can be remedied
using traditional image filtering techniques or data-driven models.

4 IMPLEMENTATION
Our generalized approach to accessible hyperspectral imaging requires a rolling shutter camera, a means of
manipulating the light that is either incident to the scene or received by the camera, and a software pipeline for
capturing and reconstructing spatial-spectral coded images. ChromaFlash is a smartphone-specific implementation
that uses LEDs to illuminate the scene in different wavelengths of light.

4.1 Hardware
As shown in Figure 2, our hardware setup comprises a smartphone camera and a purpose-built multispectral
flash that is affixed to the smartphone. We describe each of these components below.

4.1.1 Smartphone Camera. ChromaFlash uses the primary rear-facing camera on a OnePlus 9 Pro. The device
operates on Android 13 and is powered by a Qualcomm Snapdragon 888 octa-core processor with 12 GB RAM
and 256 GB storage. The camera supports autofocus and auto white balance procedures. The camera sensor on
this device, the Sony IMX 789, has an image capture resolution of 12 MP (4000× 3008) and a maximum frame rate
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of 120 fps. It employs an electronic rolling shutter, allowing for speeds up to 𝑇𝑅𝑆 = 10 𝜇𝑠 per row, with exposure
durations as short as 𝑇𝐸𝑋𝑃 = 67 𝜇𝑠 . For capturing RGB images, the camera sensor utilizes a standard RGGB Bayer
filter array, which we characterized using the camSPECS XL7 measurement tool. The left side of Figure 2 shows
the spectral sensitivity of our camera sensor.

4.1.2 Multispectral Flash. We fabricated a multispectral flash that attaches to the back of a smartphone. This flash
unit includes 11 unique narrowband LEDs (Lumileds Luxeon C Color) exhibiting spectral bandwidths typically
ranging between 20 and 30 nm full width at half maximum. We prioritized LEDs with adequate brightness and
peak wavelengths spaced roughly 30 nm apart across the visible spectrum8. The right side of Figure 2 illustrates
the spectral power distribution for the LEDs we selected. The flash unit also includes a white LED (Lumileds
Luxeon C 4000K) to capture the scene under broadband illumination, which we use for image post-processing
described later.

The flash unit is controlled by an ESP32 microcontroller (Adafruit ESP32 Feather V2) that communicates with
the smartphone via Bluetooth. When the smartphone sends a signal to the ESP32, the board rapidly cycles through
the LEDs according to a predetermined sequence. The flash unit includes n-type MOSFET arrays (Sanken Electric
SLA5085) to enable such high-speed switching operations. Because randomizing the illumination sequence of
LEDs facilitates reconstruction, the sequence is deliberately pseudo-randomized such that each LED illuminated
the scene for the same cumulative duration, but the duration is split and shuffled across the sequence randomly.

4.2 Software
As shown in Figure 3, our software pipeline involves acquiring coded images, processing them, and then
reconstructing them into hyperspectral images. Since current smartphone camera APIs do not allow for precise
synchronization between the start of camera exposure and external hardware like our multispectral flash,
ChromaFlash uses a post-hoc alignment step to determine where the LED sequence starts within an image.

4.2.1 Coded Image Capture. We developed a custom Android application using the Camera2 API to facilitate
the acquisition of spatial-spectral coded images. Like a standard camera app, pressing the shutter button within
our app initiates the image capture process. This process starts by sending an activation signal to the ESP32
that controls the multispectral flash. The app then uses a simple thresholding-based algorithm to identify the
optimal exposure, coupled with the phone’s in-built autofocus algorithm to adjust focus for the entire frame.
Once this is determined, the app initiates RAW image capture requests. The app collects three images in a single
request: one with the flash activated to rapidly cycle through narrowband LEDs (multispectral mode), one with
the flash deactivated (ambient mode), and one under white LED light (white mode). The first image is the only
one strictly required for ChromaFlash, while the other two facilitate ambient light correction and post-processing
respectively. The app allows for more images to be taken in the multispectral mode to gather a greater number of
spectral measurements for each pixel. It also provides control over multiple camera settings (e.g., ISO, exposure
time, number of image capture requests) and flash settings (e.g., capture mode, LED on/off duration).

4.2.2 Pre-Processing. Once the images have been captured and stored locally on the smartphone, they are
transferred to a desktop workstation for subsequent image signal processing steps. These steps include black
level adjustment, RGB demosaicing using bilinear interpolation, and normalization. Additionally, we perform
ambient light correction at this stage by subtracting the image taken in ambient mode jambient from the captured
coded image jmeasured to obtain corrected coded image j.

7https://www.image-engineering.de/products/equipment/measurement-devices/588-camspecs-express
8Ultraviolet or infrared LEDs could be used to expand ChromaFlash’s spectral coverage provided that a sensor with extended spectral
sensitivity is used.
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Fig. 3. The software pipeline of ChromaFlash. The system uses at most three inputs: (1) a coded image captured using a
multispectral flash, (2) an image taken under ambient light for ambient light correction, and (3) an image taken under a white
LED for guided image filtering; only the first is strictly required for reconstruction. After applying various pre-processing
steps, ChromaFlash determines where the LED sequence started in the image by detecting a fixed illumination delimiter,
after which it uses ADMM to generate the complete hyperspectral image cube. Finally, a guided image filter is used to reduce
visual artifacts.

4.2.3 Temporal Alignment of Rolling Shutter and Multispectral Flash. To perform reconstruction from the coded
images, it is imperative to precisely determine the coding matrix Θ in Equation 3. In the context of ChromaFlash,
this involves ascertaining two key parameters: (1) the camera’s spectral sensitivity F, and (2) the spatial-spectral
mask M formed by the interplay of the rolling shutter and the LED sequence. The camera’s spectral sensitivity is
a property of the color filter array and remains fixed throughout the capture process. Similarly, the behavior of
the rolling shutter is set by the app and remains constant. However, determining the spatial-spectral mask also
necessitates identifying the correspondence between different rows of the coded image and the specific LEDs
that were illuminated at the time. This task becomes straightforward when the LEDs and rolling shutter can
coordinate with one another, but this is difficult to achieve with a smartphone camera given the limited amount
of control provided by device manufacturers. We instead use a post-hoc alignment procedure to temporally align
the rolling shutter operation and the LED sequence.

We use a fixed illumination delimiter (blue LED, no LED, red LED) to demarcate the start of the flash’s sequence.
This delimiter is intentionally activated for a longer duration compared to parts of the flash’s sequence, creating
thicker bands that serve as reference points for alignment. We detect these bands by first calculating the average
intensity of each row in grayscale and the corresponding blue and red color channels. We then identify the
contiguous set of rows with the lowest brightness to determine the center of the delimiter. Since multiple
delimiters appear in the same image at a known spacing, we leverage this fact to verify the detected bands. Once
the delimiters have been successfully identified, the rest of the spatial-spectral mask can be inferred according to
the known LED sequence.
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4.2.4 Hyperspectral Reconstruction. Upon acquiring the coded image j and computing the coding matrix Θ, we
use the alternating direction method of multipliers (ADMM) algorithm9 [10] to solve the optimization problem
and produce the reconstructed hyperspectral image hopt specified in Equation 5. We set the regularization weights
to 𝛼 = [0.01, 0.01, 0.005] and 𝛽 = 0.01, the ADMM tolerance value to 𝜌 = 1, and run the algorithm for 25 iterations.
To make the reconstruction process tractable for large images, we downsample by pooling 4 × 4 patches and then
cropping the resulting images to a resolution of 752 × 752 pixels. We reconstruct hyperspectral images at 10 nm
intervals between 400–700 nm, resulting in 31 spectral channels.
We implemented the reconstruction algorithm in Python using PyLops [45] for linear optimization and

CuPy [42] for GPU-based acceleration. The code was run on a workstation equipped with an Intel Core i9
processor with 64 GB RAM and an NVIDIA GeForce RTX 3060 GPU with 12 GB of memory. Our unoptimized
implementation currently requires 97 seconds on average to generate a hyperspectral image; readers may refer to
Appendix A for a detailed breakdown of this runtime. We acknowledge that there is still considerable potential
for further speedup, but optimizing the code for such efficiency was beyond the scope of our work.

4.2.5 Post-Processing. To mitigate visual artifacts and restore spatial details, we apply a guided image filter [24]
for edge-preserving smoothing. Derived from a local linear model, the guided filter uses a reference image to
identify which edges should be smoothed or preserved. This approach enables us to smooth the band artifacts
while preserving the structure of the reconstructed hyperspectral image hopt. For ChromaFlash, the guide is an
RGB image of the scene captured under white light. We used OpenCV’s implementation of guided image filtering
with a filter radius of 25 pixels and 𝜖 = 0.

5 EVALUATION: SIMULATED DATA
Before implementing ChromaFlash as a real-world system, we conducted a series of simulated experiments to
assess its feasibility against benchmark hyperspectral datasets containing diverse scenes. These experiments
allowed us the flexibility to modify system parameters without being concerned about hardware constraints
and engineering challenges. We also used these experiments to assess how key system parameters impact
ChromaFlash’s accuracy.

5.1 Datasets
We conducted our simulated experiments on the publicly available KAUST [34] and CAVE [63] datasets. The
KAUST dataset comprises 409 hyperspectral images obtained from indoor and outdoor environments using the
Specim IQ10 hyperspectral camera; to enable tractable experimentation, we randomly selected 100 images from
this dataset. The CAVE dataset comprises 32 hyperspectral images of various indoor objects captured through a
monochrome CCD camera paired with a tunable filter. The images in both datasets have a spatial resolution of
512 × 512 and 31 spectral bands across the visible spectrum (400—700 nm) at 10 nm intervals. We calibrated the
images to represent the true spectral reflectance of the scenes and individually normalized them between 0 and 1
for computation.

5.2 Simulation Design
We designed our simulation to closely replicate the image formation process that ChromaFlash would use in
the real world, with the exception that we adjusted the images’ spatial resolution to match those of benchmark
hyperspectral datasets. The simulated camera model assumed a standard RGB sensor with a spatial resolution of
9ADMM is a popular algorithm that attempts to solve a convex optimization problem by breaking it into smaller pieces, each of which will
be easier to handle. We refer the reader to this paper by Baek et al. [7] for a comprehensive explanation of how ADMM is used for image
reconstruction.
10https://www.specim.com/iq/
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Table 1. The ChromaFlash system parameters that were varied during the simulated experiments. The underlined values
indicate the defaults used when other parameters were being manipulated.

System
Parameter

Description Values

LED Duration The duration for which each LED was kept on. (2, 4, 8, 16, 32, 48) × 𝑇𝑅𝑆

LED Multiplexing The number of LEDs turned on simultaneously for a
given exposure band. The LEDs were randomly
selected without any potential optimizations other
than avoiding repeated combinations.

1, 2, 3, 4, 5, 6, 7

Number of
Captured Frames

The number of frames used for reconstruction, with
each frame including a different sequential order of
LEDs.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Noise Level The standard deviation of the additive synthetic
Gaussian noise relative to the maximum pixel
intensity.

0%, 1%, 2.5%, 5%, 10%

512 × 512 that captured data at 30 fps. For the color filter array, we used the spectral sensitivity of the OnePlus 9
Pro characterized using the camSPECS XL measurement device. Although we assumed that all red, green, and
blue channels could be measured at every pixel, most cameras use demosaicing algorithms to align color channels
from neighboring pixels. Simplifying assumptions in our simulated experiments included uniform spatial fallout,
negligible rise and fall times for the LEDs, and the sole consideration of diffuse surface reflectance.

The simulation process involved applying the spatial-spectral mask formed by combining the light and rolling
shutter operation matrices to the hyperspectral images as outlined in Section 3.2. Subsequently, we transformed
these masked hyperspectral images into the RGB space using the spectral sensitivity of our model camera. This
was followed by normalization and the addition of synthetic Gaussian noise to simulate the read noise of a
conventional camera sensor.

5.3 Experiment Details
Our experiments were designed to examine the importance of various parameters related to the image formation
process. Table 1 enumerates these parameters and the corresponding ranges of values that were tested. Although
each parameter interacts with one another during the image formation process, we limited our experiments to
univariate experiments rather than an exhaustive grid search for tractability.
We also used our experiments to compare the performance of ChromaFlash relative to MST++ [13], a state-

of-the-art data-driven model for RGB-to-hyperspectral image reconstruction. Unlike traditional CNN-based
approaches, the MST++ architecture utilizes a neural self-attention mechanism and a transformer backbone to
effectively model spectral self-similarity and long-range dependencies. We used an implementation of this model
that was pre-trained on the ARAD-1K dataset [5]. We did not apply guided image filtering to either ChromaFlash
or MST++ so that we could clearly convey the importance of the design factors and ensure a fair comparison.

We assessed the quality of the reconstructed images using standard metrics that describe either their spatial or
spectral qualities relative to a reference image. These metrics are described below:
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• Peak signal-to-noise ratio (PSNR): As a measure of spatial accuracy, PSNR measures the ratio between
the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its
representation. Higher PSNR values represent better spatial quality.

• Structural similarity index (SSIM): SSIM serves as a second measure of spatial similarity, comparing
luminance (mean intensity), contrast (standard deviation), and structural information (correlation) between
two images. It calculates a value between -1 and 1, with higher values indicating stronger similarity.

• Spectral angle mapper (SAM): SAM quantifies the similarity between the spectral response of two
pixels as an angular measurement in a multidimensional spectral space. Lower SAM values indicate higher
spectral similarity.

We calculated PSNR and SSIM for each spectral channel, reporting the average value across channels. We
computed SAM for each pixel in the image and reported the average value across pixels.

5.4 Results
5.4.1 LED Duration. Longer LED durations lead to more contiguous pixel rows being illuminated with the same
light spectrum. Thicker exposure bands increase the amount of coherent spatial information that is captured
within a coded image, but they also limit the diversity of spectral information that is gathered within that
spatial region. Furthermore, thicker bands are more likely to increase the spacing between successive bands
corresponding to the same spectral channel. Varying the LED duration allowed us to explore this potential
trade-off between spatial and spectral accuracy.

As shown in Figure 4, we observed the best reconstruction performance for the shortest LED duration in our
experiments. When each exposure band was two pixels thick, we observed a PSNR of 27.67 ± 5.37 dB, an SSIM of
0.89 ± 0.07, and a SAM of 14.58 ± 9.41° for the KAUST dataset. The corresponding metrics for the CAVE dataset
were 25.95 ± 3.36 dB, 0.88 ± 0.06, and 22 ± 7.86° respectively. Across both datasets, we noticed that longer LED
durations led to a decline in PSNR and SSIM along with an increase in SAM. This trend suggests that the benefit
of having more diverse spectral information within a spatial region outweighed the potential disadvantage of
losing coherent spatial information. In other words, using thicker bands necessitates the reconstruction algorithm
to fill in larger spaces for each spectral channel, posing challenges for algorithms employing hand-crafted priors
like the Laplace and 3D-TV operators.
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Fig. 4. The influence that varying the LED duration had on the performance of ChromaFlash in our simulated experiments
on the KAUST [34] and CAVE [63] datasets.
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Fig. 5. The influence that LED multiplexing had on the performance of ChromaFlash in our simulated experiments on the
KAUST [34] and CAVE [63] datasets.

5.4.2 LED Multiplexing. Measuring a scene’s appearance under multiplexed light sources has shown promise
for various imaging tasks such as scene relighting [48], color estimation [8], and hyperspectral imaging [44]. In
the context of ChromaFlash, multiplexing the LEDs results in each pixel receiving light from a greater number
of LEDs and hence, a broader spectral coverage. However, it also removes the ability to associate each pixel’s
measurement with the relatively narrow spectral response of individual LEDs. Thus, multiplexing the illumination
sources results in a trade-off between spectral coverage and spectral ambiguity when solving the hyperspectral
image reconstruction problem.
Figure 5 illustrates this trade-off and demonstrates that illuminating a few LEDs improved both the spatial

and spectral accuracy of ChromaFlash relative to the configuration without any multiplexing. The optimal
configuration for the KAUST dataset involved having three simultaneously lit LEDs, in which case we observed a
7% increase in PSNR, a 3% increase in SSIM, and a 2% decrease in SAM. The optimal configuration for the CAVE
dataset also had three simultaneously lit LEDs, leading to a 7% increase in PSNR, a 3% increase in SSIM, and a 6%
decrease in SAM. Beyond three LEDs, ChromaFlash’s performance either did not show any notable differences or
degraded since the reconstruction algorithm was unable to disambiguate the diverse spectral responses in the
absence of more measurements.

5.4.3 Number of Captured Frames. Capturing multiple frames with a distinct illumination pattern across different
pixel rows results in a greater number of spectral measurements for each pixel, thereby reducing the ill-posedness
of our reconstruction problem. However, gathering more frames comes at the cost of acquisition time.

As shown in Figure 6, the use of multiple frames substantially improved performance. We observed meaningful
performance gains up until five frames, corresponding to an acquisition time of 16 ms for a 30 fps camera. Relative
to the single-frame snapshot approach, we observed that accumulating measurements across five frames yielded
a 9% increase in PSNR, a 3% increase in SSIM, and a 2% decrease in SAM for the KAUST dataset. Using the same
number of frames for the CAVE dataset yielded a 14% increase in PSNR, a 5% increase in SSIM, and a 14% decrease
in SAM. The observed performance plateau suggests that additional frames provided redundant information,
given the settings for the other system parameters.

5.4.4 Noise Level and Data-Driven Approach. Sensor noise is an inevitable confound in most real-world imaging
systems. In the context of ChromaFlash, operating at short exposures and a high gain results in the amplification
of sensor read noise, which can be effectively modeled by a signal-independent zero-mean Gaussian distribution.
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Fig. 6. The influence that increasing the number of captured frames had on the performance of ChromaFlash in our simulated
experiments on the KAUST [34] and CAVE [63] datasets.

We quantify the negative impact that synthetic Gaussian noise has on our reconstruction performance across a
range of standard deviation values.
Gathering multiple frames is a clear way of mitigating noise, particularly with respect to spatial information

as the noise averages out across multiple measurements. Therefore, we examine the impact of noise on both
a snapshot and three-frame configuration of ChromaFlash. We also used this experiment to benchmark our
approach against the data-driven MST++ model. Since MST++ requires RGB images as input, we synthetically
generated them by applying the RGB spectral sensitivity of our camera to the hyperspectral images.

As shown in Figure 7, ChromaFlash significantly outperformed MST++ across noise levels. Under our highest
noise setting, MST++ achieved a PSNR of 22.43 ± 5.73 dB, an SSIM of 0.74 ± 0.10, and a SAM of 32.88 ± 6.83° for
the KAUST dataset and a PSNR of 20.99 ± 3.47 dB, an SSIM of 0.75 ± 0.08, and a SAM of 37.89 ± 6.04° for the
CAVE dataset. The snapshot configuration of ChromaFlash yielded a 10% increase in PSNR, a 5% increase in
SSIM, and a 38% decrease in SAM for the KAUST dataset and a 7% increase in PSNR, a 5% increase in SSIM, and a
26% decrease in SAM for the CAVE dataset. Meanwhile, the multi-frame configuration yielded a 10% increase in
PSNR, a 1% increase in SSIM, and a 26% decrease in SAM for the KAUST dataset and a 4% increase in PSNR, a 6%
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Fig. 7. The influence that varying levels of sensor noise had on the performance of ChromaFlash and MST++ [13] in our
simulated experiments on the KAUST [34] and CAVE [63] datasets.
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Fig. 8. Reconstructions from simulated data: Two examples of reconstructed hyperspectral images from scenes depicting
similar shapes but different surface textures. From left to right, the columns show a hyperspectral reference image, the image
reconstructed by MST++ [13], the image constructed by ChromaFlash, and the spectral response at the point indicated with
a cross (×). For the reconstructed images, the inset shows the image that was fed into the corresponding algorithms.

decrease in SSIM, and a 6% decrease in SAM for the CAVE dataset. Examples of reconstructed images for this
experiment are shown in Figure 8. This finding underscores the limited generalizability of RGB-to-hyperspectral
approaches and supports a more mechanistic approach like the one presented in this paper.

6 EVALUATION: REAL-WORLD DATA
In this section, we discuss the results of our real-world experiments with ChromaFlash.

6.1 Data Collection
Our experimental setup is shown in Figure 9. We mounted ChromaFlash on a tripod one foot away from objects
that were staged on a table against a white background. To regulate the ambient illumination, we used a dimmer-
controlled light source positioned at a considerable distance from the setup and measured the light intensity
using a digital light meter. For each scene, we captured the following images:

• Coded Images (12): Three images captured using ChromaFlash at each of the four following light levels:
0 lux, 50 lux, 150 lux, and 250 lux. These light levels are akin to complete darkness, dim environments
like corridors and parking garages, normally lit environments like homes and warehouses, and bright
environments like gyms and cafeterias. We captured multiple frames at each light level to enable the
examination of both snapshot and multi-frame configurations.

• Ambient Light Images (3): A single image captured at each non-zero light level (50 lux, 150 lux, and
250 lux) without any illumination from ChromaFlash. These images were used for ambient light correction.

• Reference Image (1): An RGB image captured with illumination from ChromaFlash’s white LED. This
image served as input to MST++ and as a guide for the post-processing step.
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Fig. 9. The experimental setup with ChromaFlash mounted on a tripod one foot away from the target object (ColorChecker
in this case). The flash was powered using a DC power supply, and ambient light levels were measured using a digital light
meter.

• Single LED Images (11): Eleven images captured with the scene being illuminated by each LED in
ChromaFlash’s multispectral flash individually. These images served as our ground truth.

We processed the acquired coded images using ChromaFlash’s reconstruction algorithm to generate hyperspectral
images with a spatial resolution of 752 × 752 across 31 channels. Similarly, the reference RGB images were fed to
MST++ to generate similarly sized hyperspectral images for comparison.

6.2 Experiment Descriptions
The Macbeth ColorChecker11 comprises 24 color swatches with well-documented spectral characteristics, so
we used it as a target object to quantify ChromaFlash’s spectral accuracy according to SAM. We also report
ChromaFlash’s spatial accuracy according to PSNR and SSIM as before. Since the 31 channels in the reconstructed
images outnumbered the 11 channels in our ground-truth spatial data, we used the LEDs’ spectral characteristics
to inform a linearly weighted transformation between the two. Although the comparison could have been
made in the RGB space, our chosen approach ensured a more fine-grained evaluation of spatial quality. We also
qualitatively inspected the performance of our reconstruction technique on four additional scenes featuring
everyday objects — fruits, toys, plasticware, and flowers — that varied in their spatial and spectral characteristics.
For both the Macbeth ColorChecker and the additional scenes, we examined spatial accuracy both with and

without guided image filtering to characterize its importance. We also repeat these analyses across different
ambient illumination levels to assess the effectiveness of our simple ambient light correction step.
11https://www.chromaxion.com/information/colorchecker.html
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Fig. 10. Reconstructions from real-world data: The 24 color swatches on a Macbeth ColorChecker and their respective
spectral profiles according to ChromaFlash (snapshot configuration without guided image filtering), MST++ [13], and the
ColorChecker’s specifications.

Table 2. Summary of spatial and spectral accuracy metrics for ChromaFlash and MST++ [13] in the Macbeth ColorChecker
experiment.

Without Guided Image Filtering With Guided Image Filtering

MST++
PSNR = 24.20 ± 4.15 dB
SSIM = 0.93 ± 0.03
SAM = 26.73 ± 7.14°

PSNR = 26.03 ± 4.14 dB
SSIM = 0.94 ± 0.04
SAM = 26.99 ± 7.14°

ChromaFlash (snapshot)
PSNR = 20.23 ± 2.58 dB
SSIM = 0.85 ± 0.10
SAM = 15.45 ± 7.45°

PSNR = 25.92 ± 4.85 dB
SSIM = 0.88 ± 0.07
SAM = 15.47 ± 6.93°

ChromaFlash (3-frame)
PSNR = 22.88 ± 4.49 dB
SSIM = 0.88 ± 0.07
SAM = 17.19 ± 5.73°

PSNR = 25.95 ± 4.89 dB
SSIM = 0.89 ± 0.06
SAM = 16.35 ± 7.64°

6.3 Results: Macbeth ColorChecker
6.3.1 Without Guided Image Filtering. Table 2 summarizes the performance ofMST++ and ChromaFlash according
to spatial and spectral accuracy metrics on the Macbeth ColorChecker. MST++ achieved a PSNR of 24.20 ± 4.15 dB
and an SSIM of 0.93 ± 0.03. The snapshot and multi-frame of ChromaFlash exhibited slightly inferior performance
without guided image filtering, albeit not significantly so. The snapshot configuration achieved a PSNR of
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Fig. 11. The influence that varying levels of ambient illumination had on the performance of ChromaFlash (snapshot
configuration with guided image filtering) in the Macbeth ColorChecker experiment.

20.23 ± 2.58 dB and an SSIM of 0.85 ± 0.10, while the multi-frame configuration achieved a PSNR of 22.88 ± 4.49 dB
and an SSIM of 0.88 ± 0.07.
To evaluate the spectral accuracy of our prototype, we examined the spectral response curves obtained from

our reconstructions and the ColorChecker datasheet. Figure 10 illustrates the effectiveness of ChromaFlash in
reconstructing these spectral profiles. In contrast to MST++, which achieved a SAM of 26.73 ± 7.14° across all
color swatches, the snapshot configuration of ChromaFlash obtained values of 15.45 ± 7.45° and 17.19 ± 5.73° with
single- and multi-frame configurations respectively. Surprisingly, SAMworsened in the multi-frame configuration,
a trend observed in our simulations in the presence of relatively high noise levels.

6.3.2 With Guided Image Filtering. Using guided image filtering improved spatial accuracy for all three techniques.
According to PSNR, the spatial accuracy of MST++ improved by an average of 1.83 dB, while the single- and
multi-frame configurations of ChromaFlash improved by an average of 5.69 dB and 3.07 dB respectively. In fact,
this post-processing step brought the average PSNR across all three techniques within 0.11 dB of one another,
rendering ChromaFlash on par with MST++ according to that metric. The spatial accuracy of the three techniques
did not improve as much according to SSIM, as each technique improved by an average of less than 0.03.
The impact of guided image filtering was also negligible on the spectral accuracy of MST++ and the snap-

shot configuration of ChromaFlash. SAM improved by an average of 0.84° in the multi-frame configuration of
ChromaFlash, but this performance gain fell well within the variance observed across all 24 color swatches.

6.3.3 Impact of Ambient Illumination. The application of a simple ambient light correction step resulted in
consistent performance across all evaluated light levels. Figure 11 shows how the snapshot configuration of
ChromaFlash with guided image filtering performed across all of the tested light levels. In the brightest lighting
condition (250 lux), ChromaFlash achieved a PSNR of 25.45 ± 2.79 dB, an SSIM of 0.91 ± 0.04, and a SAM of
15.79 ± 6.74. Compared to ChromaFlash’s performance in the absence of ambient lighting, these results indicate
marginal decreases in PSNR and SAM values while showcasing an improvement in SSIM.

6.3.4 Takeaways. Overall, we observed that MST++ slightly outperformed ChromaFlash with respect to spatial
accuracy, whereas the converse was true for spectral accuracy. These discrepancies may be attributed to a couple
of factors. First, it is important to note that multiple images within the ARAD-1K dataset [5] used to train MST++
include a ColorChecker as part of broader scenes, so the model may be particularly adept at reconstructing
images with it. Second, analysis of the spectral curves revealed that green colors between 500–560 nm posed a
greater challenge to ChromaFlash’s reconstruction ability relative to MST++. We speculate that this is because

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 132. Publication date: September 2024.



ChromaFlash: Snapshot Hyperspectral Imaging Using Rolling Shutter Cameras • 132:21

ChromaFlash had inadequate sampling in the green region, due in part to the fact that the corresponding LEDs
had a wide bandwidth. Conversely, we suspect that MST++ might have benefited from the greater quantum
efficiency of the green color filter in RGB cameras. Despite these differences, our findings demonstrate that
ChromaFlash delivers comparable results to a data-driven RGB-to-hyperspectral approach without the need for
training data.

6.4 Results: Additional Scenes
6.4.1 Qualitative Results. Figure 12 shows the other scenes that we captured using the snapshot configuration of
ChromaFlash; Appendix B shows a subset of these scenes across all 11 spectral bands. Although all of the objects
are recognizable from the reconstructed images (column 3), their spatial quality is diminished compared to those
produced during our simulations. The images exhibited band-like artifacts after reconstruction, primarily due to
the interpolation of information coded by the rolling shutter between pixels. However, guided image filtering
effectively eliminated such artifacts using a single frame taken under white lighting (column 4). Although this
step requires an extra image capture, it substantially enhances spatial quality. In contrast, the reconstructions
from MST++ did not exhibit band artifacts and were more spatially consistent without any filtering procedures,
but they showed poor spectral accuracy. This visual comparison is provided in Appendix C.

Figure 13 showcases a subset of scenes under varied ambient light levels with ambient light correction applied.
As in the experiment with the Macbeth ColorChecker, we observed minimal impact from this potential confound
once there was a reference image under ambient lighting to subtract from the original algorithm input.

6.4.2 Takeaways. There are many factors that may have contributed to the performance discrepancy between
the simulations and real-world experiments that we ran. A subset of them are described below:

• LED Transition Times: We assumed instantaneous rise and fall times for the LEDs in our simulated
experiments. However, the LEDs we used in our implementation took approximately 40 𝜇s to transition
between states, causing rows along the fringes of a given band to receive less light than those in the
middle. This parameter could have been incorporated in the spatial-spectral mask used to represent the
illumination pattern, but doing so perfectly would require perfect synchronization between the LEDs
and the rolling shutter. Otherwise, the rows within a given band would be scaled incorrectly. Because of
imperfect shutter-flash alignment and the potential blurring between band fringes, the horizontal artifacts
were more apparent in our real-world data.

• Uniform Lighting: We assumed that each LED uniformly illuminated the entire scene, but LEDs typically
emit a narrow cone of high intensity that diminishes further away from the center. Furthermore, the LEDs
in our implementation were arranged in a way such that they had slightly different optical axes relative
to the camera. The uniformity of real-world lighting also depends on the distance between the LEDs and
the scene. At far distances, the unevenness of the lighting becomes more apparent and the difference
in the optical axes becomes less important. Conversely, putting the hardware close to the target object
can ensure that the majority of the camera frame lies in the flash’s hotspot where the illumination is
essentially uniform, although doing so sacrifices the camera’s field of view. In our real-world experiments,
the heterogeneity of the lighting ultimately led to poorer reconstruction along the top and bottom of the
images where the lighting was less uniform.

• Object Reflectance: An additional element that could not have been factored into our simulation was
the reflective properties of the target objects. All objects exhibit some combination of diffuse and specular
reflection. Diffuse reflection occurs when light hits a rough or non-glossy surface and scatters in many
different directions, creating a matte appearance. Specular reflection occurs when light hits a smooth or
glossy surface and reflects at a specific angle, creating a shiny appearance with bright spots. Our simulated
experiments relied on passive hyperspectral imaging datasets, so the reflective properties of the target
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Fig. 12. Reconstructions from real-world data: Four scenes depicting (A) plasticware, (B) flowers in a vase, (C) fruits
and vegetables, and (D) a multi-colored pool toy. From left to right, the columns show an RGB image of the scene captured
under white light, a coded image captured using our ChromaFlash prototype, the reconstructed image from the snapshot
configuration at a specific wavelength, the reconstructed output following the guided filtering step, and the ground-truth
image for that particular wavelength.

objects only influenced the amount of natural light that was reflected back to the camera. On the other hand,
ChromaFlash uses active illumination for hyperspectral image reconstruction, making its accuracy heavily
dependent upon how the target objects reflect the multispectral flash’s light. In general, we observed more
coherent reconstruction along the spatial dimensions in regions with less specular reflection.
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Fig. 13. Reconstructions from real-world data: Two scenes showcasing (A) plasticware, and (B) flowers in a vase. From left
to right, the columns show the final reconstructed images at specific wavelengths from our prototype system, corresponding
to different ambient light levels: 0 lux, 50 lux, 150 lux, and 250 lux (depicted in the insets). The rightmost image in each row
represents the ground truth for that particular wavelength.

7 DISCUSSION
In our discussion, we first describe design considerations and potential applications for ChromaFlash. We then
enumerate additional limitations of our generalized approach.

7.1 Implementation Recommendations
Our experiments with ChromaFlash revealed important design considerations for both our generalized approach
and our specific implementation thereof.

7.1.1 Hardware Optimizations. ChromaFlash requires light sources across the spectrum in order to probe different
components of the scene’s spectral signature. We used 11 narrowband LEDs that were spaced roughly 30 nm
apart to cover most of the visible spectrum (400–700 nm), but the peak wavelengths of the LEDs could be
catered towards a single target application if it demands higher accuracy in specific portions of the spectrum.
Regardless, using LEDs with narrow bandwidths is critical for accurate reconstruction. If two LEDs have similar
characteristics, then the resulting spectral information will be conflated during reconstruction. We observed
this phenomenon in two of our experimental results. First, our simulations revealed that LED multiplexing only
provided benefits when a few LEDs were illuminated at the same time; once more LEDs were illuminated, the
spectra began to overlap and produce a broadband light source. Second, our real-world experiments yielded
better results for reds and blues than for greens. This is because green LEDs inherently have a wider bandwidth
— a commonly known problem known as the "green gap" [53].

7.1.2 Software Optimizations. Our simulations revealed that thinner spatial bands are preferable for ChromaFlash.
We varied this parameter by changing the LED duration while assuming a fixed shutter speed setting on the
camera. Conversely, we could have changed the camera’s shutter speed parameter while keeping the LED duration
fixed, but we chose the former approach since faster shutter speeds provide more precise control over the spatial
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resolution of the bands. Nevertheless, the camera’s shutter speed is important for multiple reasons beyond band
thickness. If the shutter speed is too fast and the exposure time is very short, the camera sensor will not have
enough time to receive sufficient light within a single pixel row, leading to poor signal quality. If the shutter speed
is too slow, the light from consecutive LEDs can mix within the same row. Although our simulated experiments
showed that some amount of multiplexing is helpful, we posit that such mixing is undesirable since it is harder to
determine the contributions of each LED within a given row. With these considerations in mind, it is optimal
to have a shutter speed that balances the benefits of moderate LED mixing with the need for sufficient light in
a single pixel row. Further investigation could also be put towards optimizing the LED sequence such that the
overlapping spectra are relatively orthogonal. While we used a pseudo-random sequence in line with compressed
sensing theory, algorithms for selecting the optimal LED multiplexing have been shown to improve performance
in comparable tasks [40].

7.1.3 Calibration. While ChromaFlash allows developers to empirically specify a number of hardware and
software specifications, there are inevitably going to be shortcomings in this process. Camera specifications can
be difficult to find online, the spectral characteristics for LEDs may be incorrectly reported, and facets of the
image formation process may need to be assumed as we did in our work. These challenges can be overcome by
employing a calibration process similar to what is done for professional photography. This procedure would
entail capturing an image with a color calibration target like a Macbeth ColorChecker and then calculating a
matrix that can be applied post-reconstruction to recover radiometrically accurate results.

7.2 Potential Applications
Our experiments alluded to potential applications of ChromaFlash, but we expand on these opportunities here.

7.2.1 Domain-Specific Applications. Hyperspectral imaging has been utilized for an array of human-centered
applications across domains [22], and ChromaFlash draws these applications closer to end-users without access
to traditional hyperspectral cameras. For example, hyperspectral imaging has been used to analyze the chemical
composition of produce [61], which can be used for quality control and shelf-life prediction. Similar capabilities
have been applied to material sensing. Although many plastics share the same translucent appearance, only a
fraction of plastic objects are recyclable. Hyperspectral imaging has been used to discriminate between different
types of plastic to help individuals make this determination in the absence of proper labels [25]. In digital
forensics, hyperspectral imaging has been used to validate the authenticity of documents and art pieces by
analyzing the spectral characteristics of the materials and revealing hidden or altered features. Finally, many
medical applications rely on precise color information about tissues, veins, and other parts of the body. One of
the most popular applications in this space involves superficial blood vessel localization [49], but devices like
pulse oximeters also rely on measuring the relative absorption of different wavelengths of light. This technique
has been translated to smartphone applications that estimate blood oxygenation [11, 12] and hemoglobin [57, 58],
which could be made more precise with hyperspectral data.

7.2.2 Form Factors. Our real-world experiments were conducted such that ChromaFlash was placed close to the
target objects. Although this may seem like a restrictive limitation, we foresee many form factors and deployments
that would be amenable to these conditions. Since we showed that we can account for ambient lighting, we believe
that our instantiation of ChromaFlash could be used indoors provided that the user moves their smartphone
close to the target object. A small enclosure could also be placed around the smartphone, allowing users to place
objects in a dark compartment that precludes the need for ambient light correction. Factory machines, recycling
bins, and household appliances (e.g., refrigerators and vacuum cleaners) could be similarly constructed to analyze
objects in relative darkness.
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7.2.3 Hyperspectral Video. Past hyperspectral imaging systems proposed by mobile and ubiquitous computing
researchers [21, 50, 60] can already enable the aforementioned domain-specific applications to a degree. However,
ChromaFlash surpasses these systems by enabling snapshot capture. Doing so paves the way for hyperspectral
videos that can handle dynamic scenes. This affordance can be useful when either the target object or the camera
is moving. Many proposed systems for localizing blood vessels involve head-worn devices, which means that
the information shown on the display must update itself as the clinician’s head moves. Without hyperspectral
video, the clinician would have to keep their head still in order to have a hyperspectral camera scan the patient.
The patients themselves can also move. Although it may be reasonable to assume that an adult patient can keep
their arm still while a standard hyperspectral imaging system scans the area, the same may not be true for a
baby. Being able to deliver real-time hyperspectral data for every video frame would enable a clinician to track a
baby’s blood vessels as they move their arm.

7.3 Limitations
Beyond the assumptions we noted throughout our analyses, there are other limitations to our implementation of
ChromaFlash. First, our software pipeline does not explicitly address sensor noise. The ADMM algorithm allows
for integrating sophisticated denoisers as additional plug-and-play priors [55], providing a hybrid approach
that combines the advantages of traditional optimization and deep learning; however, we chose to omit these
techniques to keep our approach simple. Second, we only tested ChromaFlash in indoor scenarios where the target
object was close to the camera. We believe that these conditions are suitable for many applications, yet testing
ChromaFlash at further distances and in the presence of outdoor sunlight remains an area for future exploration.
Future work could incorporate ambient illumination into the image formation model itself, eliminating the
need for an ambient frame subtraction step. Ambient light could conceptually be treated as another LED in
the multispectral flash, with multiple pixel rows in a frame capturing the scene under ambient light using
our existing approach. For application contexts that require operation under bright daylight such as drones or
farming, a passive implementation of our rolling-shutter coded approach with time-varying filters may be more
suitable. Finally, we demonstrated the algorithmic feasibility of reconstructing the hyperspectral images from
a single camera frame, but we did not implement a real-time snapshot hyperspectral imaging system. Doing
so would require implementing and optimizing our reconstruction algorithm so that each camera frame can
be fully processed before the next one is received, but this effort was beyond the scope of our work. Potential
solutions to this include employing memory-efficient data structures to streamline reconstruction, implementing
pixel quantization to reduce computational complexity, and leveraging parallelization to handle frame-level
computations more efficiently.

8 CONCLUSION
We demonstrated the possibility of using commodity rolling shutter cameras for accessible, snapshot hyperspectral
imaging provided a means of controlling the wavelength of light incident on the sensor. We implemented and
evaluated ChromaFlash using a combination of simulated and real-world data to not only compare our approach
to a state-of-the-art data-driven technique but also to evaluate the implications of different design parameters
and potential confounds. We hope that our work inspires researchers to build off of our blueprint for accessible
hyperspectral imaging in order to accelerate the development of ubiquitous computing applications that may
benefit from advanced spectral analysis capabilities.
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A RUNTIME ANALYSIS
We implemented the reconstruction algorithm in Python using PyLops [45] for linear optimization and CuPy [42]
for GPU-based acceleration. The code was run on a workstation equipped with an Intel Core i9 processor with 64
GB RAM and an NVIDIA GeForce RTX 3060 GPU with 12 GB of memory. The table below provides a detailed
breakdown of the amount of time required to process a 752 × 752 image. These times were benchmarked in
Python using the time module across 10 runs with different images.

Component Runtime (seconds)

Black level adjustment 3.7 × 10−2
RGB demosaicing 2.18
Normalization 3.4 × 10−4
Ambient light correction 8.22 × 10−5
Temporal alignment of rolling shutter 3.06
and multispectral flash
ADMM (3.66 per iteration) × 25 iterations = 91.39
Guided image filtering (3.5 × 10−3 per channel) × 31 channels = 0.11
Total 96.77

B RECONSTRUCTION ACROSS ALL SPECTRAL CHANNELS
The following figures provide additional examples of ChromaFlash’s reconstruction across all 11 spectral channels.

Fig. 14. Reconstructions from real-world data for the fruits scene: From left to right, each column represents a distinct
spectral band within 400 nm to 700 nm. From top to bottom, rows correspond to the reconstruction output of ChromaFlash’s
snapshot configuration, the guide image for post-processing, the reconstruction outputs after guided image filtering, and the
ground-truth reference image for that given wavelength.
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Fig. 15. Reconstructions from real-world data on the pool toy scene: From left to right, each column represents a
distinct spectral band within 400 nm to 700 nm. From top to bottom, rows correspond to the reconstruction output of
ChromaFlash’s snapshot configuration, the guide image for post-processing, the reconstruction outputs after guided image
filtering, and the ground-truth reference image for that given wavelength.

C COMPARISON WITH MST++ ON ADDITIONAL SCENES
The figure below visually compares the outputs of MST++ [13] and the snapshot configuration of ChromaFlash.
While the reconstructed images from MST++ appear more spatially coherent than those from ChromaFlash
without guided image filtering, we observe that they are comparable after this post-processing step. Furthermore,
MST++ severely underperformed in spectral accuracy. For example, the strawberries in the fruits scene (row C)
should be bright in the reconstructed images because they illustrate the amount of spectral information between
610 and 625 nm in grayscale. The strawberries are far brighter in the ChromaFlash images than they are in the
MST++ images, showcasing ChromaFlash’s superior spectral accuracy.
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Fig. 16. Reconstructions from real-world data: This is an extension to Figure 12, comparing ChromaFlash with MST++ [13] 
in reconstructing real-world scenes. From left to right, the columns show an RGB image of the scene captured under white 
light, the reconstructed image from MST++ at a specific wavelength, the reconstructed image from MST++ following guided 
image filtering, the reconstructed image from the snapshot configuration of ChromaFlash, the reconstructed image from 
ChromaFlash after guided image filtering, and the ground-truth reference image for that wavelength.
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